
AIAA

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L’Enfant Promenade, S.W., Washington, D.C. 20024

AIAA-2003-1237
An Interface for Specifying
Rigid-Body Motions for CFD Applications

Scott M. Murman, William M. Chan
Michael J. Aftosmis, Robert L. Meakin
NASA Ames Research Center
Moffett Field, CA

41st AIAA Aerospace Sciences Meeting
January 6-9, 2003 / Reno, NV

AIAA-2003-1237

An Interface for Specifying

Rigid-Body Motions for CFD Applications

Scott M. Murman∗, William M. Chan†,
Michael J. Aftosmis,† and Robert L. Meakin‡

NASA Ames Research Center
Moffett Field, CA 94035

Abstract

An interface for specifying rigid-body motions for CFD applications is presented. This interface
provides a means of describing a component hierarchy in a geometric configuration, as well as the
motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists
of a general set of datatypes, along with rules for their interaction, and is designed to be flexible
in order to evolve as future needs dictate. The specification is currently implemented with an XML
file format which is portable across platforms and applications. The motion specification is capable
of describing general rigid body motions, and eliminates the need to write and compile new code
within the application software for each dynamic configuration, allowing client software to automate
dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to
be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples,
as well as the raw XML source of the file specifications, are included.

1 Introduction

It is common practice in CFD applications to
compute a parameter study using static configura-
tions. For example, a single (usually steady-state)
simulation can be computed for various flap de-
flection angles, freestream Mach numbers, and an-
gles of attack. In this manner a matrix of static
“snapshots” of the flowfield can be easily gener-
ated, and interrogated to discern trends. This is
possible, in part, because the inputs required by
a CFD flow solver to perform a static simulation
(those controlling the choice of scheme, timestep,
etc. aside) are usually only the geometry filename
(typically a character string) and freestream con-
ditions (scalars). If some means of varying these
input parameters can be devised, powerful auto-

∗ELORET. Member AIAA
†Senior Member AIAA
‡U.S. Army AFDD (AMCOM). Senior Member AIAA
Copyright c©2003 by the American Institute of Aero-

nautics and Astronautics, Inc. No copyright is asserted in
the United States under Title 17, U. S. Code. The U. S.
Government has a royalty-free license to exercise all rights
under the copyright claimed herein for Governmental pur-
poses. All other rights are reserved by the copyright owner.

mated tools for generating large “databases” of
static simulation results can be built (cf. Refs. [1,
2]). When working with dynamic simulations how-
ever, where it is desired that the geometry move
in some manner during the computation, a simple,
yet general, means of describing the required mo-
tion is unavailable. Common methods of specifying
a moving geometry for a CFD application include
limiting the allowable motions, such as only provid-
ing a constant rotation rate about a Cartesian axis,
or requiring the user to prescribe the motion by
writing code that can be called from within the ap-
plication. The former of these is not general enough
for complex motions, while the latter does not lend
itself to automation, and requires an “expert” user
to implement. A method for describing geometric
configurations and their dynamic motions which is
general, can be automated, and is readily accessible
to non-expert users is desired.

Towards this end, this work presents a proto-
col for specifying geometric hierarchies and their
rigid-body motions. This protocol takes the form
of a general set of datatypes and rules which can
be implemented through any desired syntax, with
the current choice being the Extensible Markup

1

Language (XML)[3]. This low-level XML imple-
mentation is then “wrapped” with an Application
Programming Interface (API). With this interface
between the geometry motion and the application
tools (such as the CFD flow solver), it is possible to
build automated tools for performing dynamic sim-
ulations, such as would be required to compute a
matrix of dynamic stability derivatives (cf. Refs. [4–
6]). The specification is suitable for simple ana-
lytic prescribed motions, as well as complex N-body
problems with collisions and controller feedback. A
fixed specification for the geometry motion allows
multiple application programs, such as visualiza-
tion tools, flow solvers, and post-processing tools,
to be built upon a common interface. The geom-
etry motion can be stored in a single repository,
and shared among distributed applications, which
minimizes errors due to duplication. Efforts to ex-
tend the specification to include geometry states
and non-rigid bodies are underway, and will be dis-
cussed at the end of this article. Illustrative ex-
amples are used throughout this article to describe
the specification, and the entire XML description
for these examples is included in the appendixes for
reference.

2 Design Goals

The collection of datatypes and standards for
the current geometry specification, along with the
API, file parsers, and other auxiliary packages, is
referred to as the Geometry Manipulation Proto-
col (GMP) (cf. Fig. 1). Reference to a protocol is
inspired by Internet Protocols (IP). IPs are low-
level conventions which enable data to be trans-
ferred between machines, and higher-level applica-
tions to be built upon a common standard. Simi-
larly, GMP is a set of low-level conventions which
enable geometry descriptions and manipulations to
be shared and understood among various (higher-
level) CFD applications and tools. Currently, the
interface is implemented using an XML file for-
mat along with an analytic function parser, al-
though the interface is not specific to XML. The
function parser will be described in Sec. 4. The
specification is implemented in a stand-alone li-
brary with an ANSI-C interface. This interface
is extended using the Simplified Wrapper Inter-
face Generator (SWIG)[7, 8] to support all popular
scripting languages, including Perl, Python, Java,
Tcl, etc. GMP is currently integrated within an

CART3D

<< Layer >>
Cartesian

GMP

OVERFLOW-D

<< Layer >>
Overset

OVERGRID - GUI

<< Layer >>
Overset, Cartesian

ANSI-C API

SWIG Wrapper

XML Data File

XML Parser
Function Parser

Types and Standards

Figure 1: Schematic of GMP implementation components.
The core is a set of datatypes and standards, which are im-
plemented with an XML file specification. The XML file
parser and analytic function parser provide low-level func-
tionality. An ANSI-C API is built on top of these, and
is extended using SWIG[8] to provide an interface for all
common interpreted languages. High-level applications im-
plement a customized middleware layer on top of the API
provided by GMP.

inviscid Cartesian moving-body flow solver[9], the
OVERFLOW-D structured, overset, viscous, dy-
namic flow solver[10], as well as the OVERGRID
pre-processing Graphical User Interface (GUI)[11],
along with several support applications.

Two of the primary goals during the develop-
ment of the current specification were: 1) that it
easily allows higher-level application programs (or
scripts) to modify the data for analyzing an entire
parameter space of dynamic simulations, and 2)
that it also enables the use of GUI’s for specifying
the motion of rigid components. In order to sat-
isfy the first item, it was decided that only a plain
text (human-readable) file format could be used.
There are many schemes that could be used for
defining a plain text specification, however for the
current application the syntax should allow vari-
able definitions, comments, nested structures, and
also the ability to insert the contents of another file
(similar to the #include mechanism of the C pro-
gramming language). XML satisfies all these crite-
ria, and also provides several additional desirable
features. By implementing the rigid-body motion
specification using XML, it is possible to leverage
the large amount of development work dedicated
to XML in the web and database communities.
Public-domain and commercial software packages
exist for parsing, validating, displaying, generating

2

databases, and many other tasks for manipulating
XML files. XML is not only portable across plat-
forms, it also can be “understood” by many differ-
ent applications, from web browsers to word pro-
cessors. An example is the color-coded XML source
included in the appendixes, which were generated
by a web browser. One final attractive feature of
XML for the current application is that the hier-
archical structures that appear in many geometric
configurations, and also their motions, are directly
supported by the XML language.

The motion specification is intended to be simple
and intuitive enough that it can be used for rela-
tively simple motions, such as an oscillating airfoil,
yet still be general enough to handle any arbitrary,
complex motion. The specification allows for pre-
scribed motions (either analytically or through a
discrete table look-up), unconstrained 6-degree-of-
freedom (6-DOF) rigid-body motion, as well as con-
strained (1-DOF, 2-DOF, . . .) motion. Finally, it
can describe what is referred to here as “controlled
6-DOF motion”, as in a guided missile or aircraft
flying under a control system. Detailed examples
for describing a prescribed analytic motion and a
constrained 6-DOF motion are presented in this pa-
per.

One of the primary goals for the current devel-
opment was that it support extensibility, so that it
can be used in currently unanticipated roles. The
major means to meet this goal was to provide a
flexible structure that can be augmented in an al-
most arbitrary manner. The specification is inde-
pendent of any application type, such as structured
grid technology, or a particular CAD implementa-
tion. The API was also designed to be independent
of any application. Rather than provide a com-
plex API which attempts to be “all things for all
people” (and usually fails), the API is kept very
simple, and it is the responsibility of the applica-
tion programmer to build the data structures, or
complicated interfaces, which are apropos for their
particular application. For example, the current
GMP implementation is integrated within several
distinct applications[9–11]. Each of these applica-
tions provides a layer of “middleware” between the
interface datatypes, and the more complex (special-
ized) data structures used within each application
code (cf. Fig. 1).

3 Typographical
Conventions

As the current work is essentially a description of
a set of datatypes, a consistent font system is used
as an aid. All datatypes from the GMP are capital-
ized and displayed in sans serif font, e.g. Configura-
tion. Most of the types have names which connote
their intention, and hence are often used as a nor-
mal part of a sentence. Hierarchical datatypes are
displayed with an indented list, such as

• Configuration

– Component

where in this case Configuration is composed of
lower-level Components. Types are provided with
a parenthetical argument which describes whether
the type is required, optional, etc. Types which are
composed of base types, such as strings, scalars,
etc. are shown with a bracketed argument contain-
ing the base types, for example Name [string] (re-
quired). Arguments which are typed in directly are
shown in fixed-width font as in 10.0*sin(2*pi*t).

4 Analytic Function Parser

The interface specification relies heavily upon a
generic function parser which is capable of pars-
ing and interpreting arbitrary analytic functions.
These analytic functions can take an arbitrary
number of arguments. The parser understands the
common mathematical operators and precedence
rules, such as “(), ˆ,∗, /, %,+,−”, common con-
stants such as π, and most commonly used func-
tions such as “abs, log, sin, sqrt, tanh, . . . ”. For
example, pitch rate (α(t) = 10.0 sin(2πt)) for an os-
cillating airfoil is expressed as 10.0*sin(2*pi*t),
and can be evaluated at run-time by providing an
appropriate scalar value to substitute for the vari-
able t. This substitution mechanism is provided by
the function parser API. Within the GMP, an an-
alytic function which takes no arguments replaces
the role of a scalar value, i.e. a single scalar, or
numeric value, is not an explicit type. In this man-
ner, it is possible to use variables and constants
which are appropriate to the problem, making the
interface easier to specify. For instance, an angle
of rotation can be specified as pi/4, as opposed to
0.7854, and the result will be evaluated at run-time
by the application using the API for the function

3

parser∗. In the current specification, a nomencla-
ture is adopted to describe the analytic function
datatype, and optionally the arguments which are
expected. All numeric fields are specified as an ar-
bitrary function which takes no arguments, f(). If
an analytic function datatype is expected to take
an argument of time in the interface, it will be de-
scribed using f(t). A vector of 3 numeric fields,
such as is used to describe a position, is specified
as vector: f().

5 Configuration
Specification

The complete geometry which is being simulated
is referred to here as a Configuration. Before a mo-
tion can be specified, it is necessary to describe
the Configuration, so that a user can simply de-
scribe the motion of “the left rotor”, as is intu-
itive, rather than being forced to refer to some
application-specific geometry description. Instead
of tightly coupling the Configuration information
with a motion specification, the means of specifying
a Configuration and the means of specifying its mo-
tion are separated. The motion specification is then
built by referring to the Configuration. This allows
different motions to easily refer to the same Con-
figuration, as well as provides the ability to build
separate tools which extend the Configuration.

Within GMP, the Configuration description is
stored in an XML file typically named Config.xml.
An example Configuration file for the V-22 tilt-rotor
is included in Appendix A. A typical Configuration
is often made up of lower-level pieces, referred to
here as Components. A simplified representation
of the V-22 tilt-rotor geometry is shown in Fig. 2,
with the different Components highlighted by color.
The V-22 is made up of many Components, such as
the fuselage, wing, empennage, rotors, etc. Many
of these Components can also be further broken into
smaller pieces, for example the rotors can be bro-
ken down into a nacelle, hub, and blades. This
suggests that the Configuration is composed of a
hierarchy, or tree, of Components. One possible hi-
erarchy structure for the V-22 is shown schemati-
cally in Fig. 2. Notice also that this hierarchy is not
unique, for example the rotors might be considered
as a lower-level Component of the wing, or on the
same level as the wing. These different hierarchies

∗It is still possible to use a simple scalar value, and it will
evaluate to itself at run-time.

Fuselage
(struc)

Wing
(struc)

Empennage
(struc)

Left Rotor
(struc)

Right Rotor
(struc)

Rotors
(container)

Left Blades
(struc)

Right Blades
(struc)

Figure 2: Example Configuration hierarchy for the V-22 tilt-
rotor. Component types are specified by color and text. Solid
lines represent a parent-child relationship, and dashed lines
represent a source-clone relationship.

can become important when specifying the relative
motion, however, as will be described in the next
section.

While the abstract hierarchy description of a
Configuration is helpful, at some level it must be
associated with the actual geometry that is to be
manipulated. This is accomplished by requiring
that each Component specify its Type, and option-
ally include some type-dependent Data. In order to
promote flexibility within the Configuration specifi-
cation, each type of Component is considered equal,
and can be utilized anywhere within the Configura-
tion hierarchy. Further, the Component types form
an open-ended list which can be extended by future
applications as needed. In other words, it is up to
the external applications to determine which type
of Components they can work with and understand,
not the specification, and similarly for the optional
type-dependent Data. A small number of Compo-
nent types have been developed in implementing

4

the GMP within the three application codes from
Refs. [9–11]. The tree-diagram of Fig. 2 includes
a label with the different Component types. These
types are briefly described as

• struc: A set of structured grid (possibly over-
lapping) surface patches

• tri: A surface triangulation

• container: An agglomeration of lower-level
Components

• clone: An duplicate of another (non-clone)
Component

A Component of the Configuration hierarchy has
the following complete list of attributes:

• Component:

– Name [string] (required)

– Type [string] (required)

– Parent [string] (optional)

– Data [arbitrary] (optional)

– Source [string] (optional)

– Transforms (optional)

∗ Translate (optional)
· Displacement [vector: f()] (re-

quired)
∗ Rotate (optional)

· Center [vector: f()] (required)
· Axis [vector: f()] (required)
· Angle [f()] (required)

∗ Mirror [x|y|z] (optional)

The Parent attribute is used to specify the tree
structure of the Configuration. The motion of a
Component is usually specified relative to its Parent.
Root nodes of the tree have no parents (the inter-
pretation being that the inertial reference frame is
the parent for motion), and multiple root nodes are
allowed. The Source tag specifies optional informa-
tion, such as a filename or link, for the Component,
so that the Configuration can potentially be built
from a library of stored Components. The Trans-
forms tag is used if the Component is to be trans-
lated, rotated, or mirrored into position within the
Configuration, and is made up of sub-types for spec-
ifying the actual transformations. All coordinates
used in the transformation are specified in the orig-
inal, untransformed (natural) coordinate system of

the appropriate geometry. The clone Type can
represent an exact duplicate, although in most in-
stances the original is copied and then Transformed
to a new position. For example, the cloned Com-
ponent can be Mirrored about the x, y, or z = 0 for
Configurations with lateral symmetry. Similarly, a
single turbine blade can be cloned and Rotated to
form a set of blades around a hub. In this manner
errors due to duplication are reduced, and a com-
mon set of methods can easily be extended to an
arbitrary number of Components.

6 Motion Specification

Each motion specification refers to the Configu-
ration description outlined in the previous section.
The specific Components which are in motion are
referred to by their Name attribute. The motion,
or sequence of motions, is described by what is re-
ferred to as a Scenario, and is specified in an XML
file named Scenario.xml. Scenarios are parameter-
ized by time (t), starting at t = 0, with the units
of time dependent upon the application. A Sce-
nario is characterized by a number of actions, each
occurring at a specific time, and for a specific dura-
tion. Currently, two types of actions can be spec-
ified; Prescribed motions, and Aero6DOF motions.
These two types of motions are considered as dis-
tinct types as there is little commonality between
them.

6.1 Prescribed Motion

The Prescribed motion can be specified as an ar-
bitrary analytic function of time, or through a dis-
crete table look-up. The analytic functions of time
are parsed and evaluated by the stand-alone func-
tion parser described in Sec. 4. The time is inter-
preted as relative to the Start time of the current
Prescribed motion, and a substitution of this cur-
rent relative time is performed whenever the an-
alytic functions are evaluated. This allows a Pre-
scribed motion to be used multiple times within the
same Scenario without modification. In order to
specify the motion, either the position of a Com-
ponent must be specified, or its velocity and ini-
tial position, though both position and velocity are
usually needed by most CFD flow solvers. Since
the initial position is available from the description
of the Configuration, and it is easier to numerically
integrate a function accurately than it is to differ-

5

entiate, the analytic motion is Prescribed by pro-
viding the translational and angular velocities over
the time period. The exception to this is the table
look-up mode of operation, where the flexibility to
specify only the position is allowed.

Motions are usually Prescribed relative to the
parent of the Component within the Configuration
hierarchy, and this is the default behavior. Op-
tions are discussed with the hovering bee example
in Sec. 6.3. The motion is specified in the initial
coordinate system of the input geometry (after any
required Transforms have been applied within the
Configuration specification).

Prescribed motions have the following required
and optional attributes:

• Prescribed

– Component [string] (required)

– Start [f()] (required)

– Duration [f()] (optional)

– InitialPosition (optional)

∗ Translate (optional)
· Displacement [vector: f()] (re-

quired)
∗ Rotate (optional)

· Center [vector: f()] (required)
· Axis [vector: f()] (required)
· Angle [f()] (required)

∗ Mirror [x|y|z] (optional)

– Translate (optional)

∗ Velocity [vector: f()] (required)
∗ Frame [string] (optional)

– Rotate (optional)

∗ Center [vector: f()] (required)
∗ Axis [vector: f()] (required)
∗ Speed [f()] (required)
∗ Frame [string] (optional)

Start and Duration refer to the starting time and
duration of the action. If the Duration is not speci-
fied the action is considered to be continued indefi-
nitely. Prescribed motions are allowed to overlap in
time intervals, and are ordered by their Start times.
InitialPosition allows the orientation of the Com-
ponents within a dynamic simulation to be trans-
formed after a Configuration has been “built”. This
allows a general Configuration to be described, and

then specialized if necessary for a dynamic simu-
lation, i.e. it further decouples the Configuration
and motion specification. The time level t = 0 is
assumed to refer to the position of the body after
the (optional) InitialPosition transforms have been
applied. The Translate and Rotate commands spec-
ify the translational velocity of the center of mass
of the component, and the rotation rate about an
arbitrary axis through the center of rotation respec-
tively. These commands are specified in the coor-
dinates of the axis system specified by the Frame
type. Choices for Frame are body or parent, with
the default being parent. Multiple Translate and
Rotate commands can be combined within a single
Prescribed action, and are applied in the order they
are specified within the XML file.

6.2 V-22 Example

The first example Prescribed motion is a specifi-
cation of the V-22 tilt-rotor where the V-22 rotors
are transitioning from the vertical to horizontal po-
sitions (by rotating about a wing chord line), and
the blades are continuously rotating about an axis
through the rotor hub (cf. Fig. 3). The left and
right sets of blades are counter-rotating. The com-
plete Scenario specification is included in Appendix
A. All of these motions are relative to their Par-
ent in the Configuration hierarchy. Note that since
the rotor blades counter-rotate, i.e. move differ-
ently relative to their parent in the Configuration
hierarchy, it is not possible to simply clone one of
the rotors, even though the geometries involved are
simply mirror images, as this would imply that all
of their sub-Components moved in exactly the same
manner. The Configuration is thus both an abstract
topology as well as a concrete means of manipulat-
ing geometry.

6.3 Hovering Bee Example

The second example Prescribed motion is of a bee
flapping its wings to hover (cf. Figs. 4 and 5), and
is also included in Appendix B. The Configuration
for the bee is a more complex example, including
cloned Components and several levels of hierarchy.
The analytic formulation for the wing motion is
based on the observations of Ellington[12]. As op-
posed to the V-22 tilt-rotor, where the compound
motion is a superposition of the motion of various
Components relative to their Parents, here the com-
pound motion is of a single Component performing

6

(a) time = 0.0

(b) time = 0.35

(c) time = 0.70

(d) time = 1.05

Figure 3: Snapshots of V-22 rotors transitioning from the
vertical to horizontal positions, while the blades continu-
ously rotate about the rotor hub. The GMP XML specifi-
cation for this motion is included in Appendix A.

an ordered series of actions. In the V-22 example,
all of the motions are specified in the parent co-
ordinate frame, which is the default frame. When
working with a complex motion of a single compo-
nent, it is desirable to specify actions relative to the
parent or relative to the continually moving body
frame. In the flapping wing example, the motion of
the wing is specified as a stroke and flapping about
axes in the parent system, and a pitch about a wing
span axis. Setting up this (relatively) complicated
motion with the aid of the OVERGRID GUI and
current motion specification infrastructure required
approximately 15 min.

6.4 6-DOF Motion

Along with Prescribed motions, CFD applica-
tions often simulate 6-DOF motions where the
rigid body is free to move under the influence of
aerodynamic loads. With the exception of Start
and Duration times, the specification of Prescribed
and Aero6DOF motions have little in common, and
hence are treated as separate types. A component
cannot be specified as having both Prescribed and
Aero6DOF motions overlapping in time. Once a
Component has been specified to have an Aero6DOF
motion, it is no longer considered to be a child
of its Parent (if it had one), and becomes a root
node, i.e. the Configuration specification becomes
dynamic when Aero6DOF motions are considered.

Aero6DOF motions contain the same Name,
Start, Duration, and InitialPosition types as Pre-
scribed motions, but also contain sub-types for In-
ertialProperties, AppliedLoads, Constraints, and Con-
trollers. These latter are treated as sub-types of an
Aero6DOF type, as opposed to types of their own,
in order to make them more general. For exam-
ple, if the AppliedLoad was a type then it would
need to refer to the Aero6DOF motion it applied
to in some manner. The AppliedLoad type would
then need to be modified each time it was applied
to a different Component. By making AppliedLoad
a sub-type, it is implicit which Component it ap-
plies to, and it is also possible to use the same Ap-
pliedLoad with multiple Components without mod-
ification. For example, if a store ejector is mod-
eled, this ejector can be tested with different store
geometries simply by referencing the appropriate
XML code within the specification. Similar argu-
ments apply to Constraints and Controllers, as Ap-
pliedLoad. AppliedLoad, Constraints, and Controllers
can be thought of as “modifiers” for the Aero6DOF

7

Body
(container)

Thorax
(tri)

Abdomen
(tri)

Left Legs
(container)

Right Legs
(clone)

Fore Leg
(tri)

Mid Leg
(tri)

Aft Leg
(tri)

Head
(tri)

Left Eye
(tri)

Right Eye
(clone)

Left
Antenna

(tri)

Right
Antenna
(clone)

Left Wing
(tri)

Right Wing
(clone)

Figure 4: Configuration hierarchy for the bee in Fig. 5. Component types are specified by color and text. Solid lines
represent a parent-child relationship, and dashed lines represent a source-clone relationship. The GMP XML specification
for this Configuration is included in Appendix B.

(a) Downstroke (left to right)

(b) Upstroke (left to right)

Figure 5: Snapshots of a bee flapping its wings in hover. The Configuration hierarchy for this example is in Fig. 4, and
the GMP XML specification for this motion is included in Appendix B.

type. In this manner it is possible to build a library
of ejector models, feedback systems, etc., which can
then be used within different simulations without
modification.

The complete type map for an Aero6DOF motion
is

• Aero6DOF

– Component [string] (required)
– Start [f()] (required)
– Duration [f()] (optional)
– InitialPosition (optional)

∗ Translate (optional)
· Displacement [vector: f()] (re-

quired)
∗ Rotate (optional)

· Center [vector: f()] (required)
· Axis [vector: f()] (required)
· Angle [f()] (required)

∗ Mirror [x|y|z] (optional)

– InertialProperties (required)

∗ Mass [f(t)] (required)
∗ CenterOfMass [vector: f(t)] (required)

8

∗ PrincipalMomentsOfInertia [vector:
f(t)] (required)

∗ PrincipalAxesOrientation (required)
· Axis [vector: f()] (required)
· Angle [f()] (required)

– AppliedLoads (optional)

∗ Start [f()] (required)
∗ Duration[f()] (optional)
∗ Frame [string] (required)
∗ Force [vector: f(t)] (optional)
∗ Moment [vector: f(t)] (optional)

– Constraint (optional)

∗ Start [f()] (required)
∗ Duration [f()] (optional)
∗ Translate [vector: f(t)] (optional)
∗ Rotate [vector: f(t)] (optional)

– Controller (optional)

The initial translational and rotational velocities
are either zero if no Prescribed motions were in ef-
fect previously, or are equal to the Prescribed val-
ues. it is assumed the origin of the PrincipalAxes
corresponds to the CenterOfMass location at the be-
ginning of the Aero6DOF motion. The InertialProp-
erties are allowed to be general functions of time,
as is necessary to model a rocket burning fuel, or a
satellite deploying an arm. it is the responsibility
of the application to implement a suitable model
for solving the 6-DOF equations under these con-
ditions.

The AppliedLoads can be specified in 3 different
coordinate frames; body, parent, and inertial.
An example of a parent frame would be a pylon
ejector force for a store separation. A constant
thrust could be modeled using an AppliedLoad in
the body frame. Constraints on the other hand are
always assumed to be relative to the parent frame.
The Constraint is specified as either a Translate con-
straint, Rotate constraint, or both. The numerical
inputs are bounded by 0 and 1, with 1 correspond-
ing to unconstrained motion and 0 for no allowed
motion relative to the parent system. The three
components of the Constraint vector are the x, y, z
components of translation or rotation. Arbitrary
functions of time can be specified for the Constraints
and AppliedLoads. Controller types are specified as
modifiers to the Aero6DOF motion, however they
are currently left vague until more experience is
gained with controlled, 6-DOF motions.

6.5 Space Shuttle Example

An example specification for an Aero6DOF mo-
tion is the Space Shuttle ejecting its two Solid
Rocket Boosters (SRB) after burnout (cf. Fig. 6).
The SRBs are free to move under the influence
of aerodynamic forces, and an additional external
ejector force is applied over the first time unit.

(a) Initial position

(b) Later time level

Figure 6: Snapshots of Space Shuttle SRBs releasing after
burnout. The GMP XML specification for this Configuration
and its motion is included in Appendix C.

7 Implementation

The current work specifies a set of datatypes and
rules for their interaction, without enforcing any
particular implementation model. The implemen-
tation is left to the particular applications, as dis-
cussed in Sec. 2. In fact, it is assumed that the
applications will only implement a subset of the

9

<Prescribed ...
<Rotate ...
<Translate ...
<Rotate ...

T = T3 T2 T1 X

Parent System
Transforms

Body System
Transforms

Component
Transforms

Parent
Transforms

Grandparent
Transforms

Root
Component
Transforms

Scenario Transforms
for Current Time

Level

Scenario
InitialPosition

Configuration
Transforms <Prescribed ...

<Rotate ...
<Translate ...
<Rotate ...

T = T3 T2 T1 X

Figure 7: Required transformations to place a moving Component at current time level. The transforms are applied
from the top down each vertical arrow. Horizontal arrows represent transformations that are composed of multiple parts.
Each Prescribed action is an accumulation of the individual commands, in both the parent and body systems. The similar
transformations from each Component in the hierarchy is applied to each of its children. This is done after each Component
has been initialized in the Configuration, and placed in its InitialPosition by the Scenario.

specification. For example, the middleware for the
Cartesian package[9] is customized for unstructured
triangulated surfaces, while the overset solver[10] is
customized for structured surface patches.∗ Fur-
ther, applications may choose to ignore compli-
cated or seldom-used features. For example, im-
plementing the clone Component type adds a layer
of complexity for the implementation and may not
be necessary for all environments. Similarly, imple-
menting a 6-DOF model which can handle variable
mass systems may not be necessary, etc. These de-
cisions are left to the application environment.

A discussion of some features of the implementa-
tion used in [9–11] is presented in order to pro-
vide further understanding. One basic require-
ment of any implementation is the ability to eas-
ily transform between the body and inertial coor-
dinate systems. The aforementioned applications
use homogeneous transformation matrices (cf. van
Arsdale[13]) to represent the transforms, which are
capable of uniformly representing translations, ro-
tations, mirroring, dilation, etc. The net effect of
any Transform or Prescribed command is then a cu-
mulative matrix product of the individual transfor-
mations, applied in order (cf. Fig. 7). When ap-
plying the Prescribed commands, a further step is
necessary in order to account for the motion of the

∗Both CFD solvers can understand the same motion Sce-
narios however, as long as the Configurations are similar.

Configuration hierarchy, as any transformation of
the Parent component affects the position of the
child. The Prescribed command processing is han-
dled in two stages. First, a homogeneous transfor-
mation matrix is constructed by considering each
Component in isolation, then the matrices from the
Configuration hierarchy are applied by traversing
the Configuration tree from top to bottom. The
transformations required to place a body in posi-
tion for a Prescribed command at an arbitrary time
level are shown schematically Fig. 7.

8 Summary and
Future Work

The GMP package implements a low-level spec-
ification for describing geometric configurations
and their arbitrary rigid-body motions. Higher-
level applications, such as visualization tools, au-
tomated post-processing environments, and CFD
flow solvers, are built on top of the low-level pro-
tocol. The specification is intended for either in-
teractive use through a GUI, or modification by
application control scripts as part of an automated
process. The protocol reduces the information re-
quired for describing and manipulating geometry to
an XML file which is portable between different op-
erating systems and different application programs.

10

This single repository for the specification reduces
errors due to duplication, and also provides a self-
documenting capability.

As more experience is gained with the GMP
specification it will continue to evolve. The flex-
ibility to handle this evolution has been incorpo-
rated into the specification wherever possible. The
stand-alone Configuration specification has many
potential uses beyond providing a means to specify
rigid-body motions. Some application areas which
are currently in development include: integrating
the Configuration specification with post-processing
tools for calculating integrated forces and moments,
providing a means for specifying a Configuration
“space” (ConfigSpace) for use when generating a
matrix of static simulations with different geomet-
ric settings, and extending the Configuration to in-
clude non-rigid bodies. Deformable bodies are re-
quired in order to morph geometry within a geo-
metric optimization package or perform aeroelastic
simulations. These types of low-level descriptions
are required in order to build reliable automated
tools for CFD simulations.

Within the current specification, the Controller
modifier for Aero6DOF motions has been left inten-
tionally sparse until more experience is gained with
controlled simulations. One outstanding item is the
ability to repeatedly execute a command, or series
of commands, optionally in a loop. This ability is
currently being added and tested within the speci-
fication by generalizing the Start time, and will be
supported in the future.

References

[1] Yarrow, M., McCann, K.M., DeVivo, A.
and Tejnil, E., “Production-Level Distributed
Parametric Study Capabilities for the Grid,”
in Proceedings of Grid 2001 2nd International
Conference on Grid Computing, 2001.

[2] Murman, S.M., Chaderjian, N.M., and
Pandya, S. A., “Automation of a Navier-
Stokes S&C Database Generation for the Har-
rier in Ground Effect,” AIAA Paper 2002-
0259, Jan. 2002.

[3] Elliotte Rusty Harold and W. Scott Means,
XML in a Nutshell: A Desktop Quick Refer-
ence. O’Reilly & Associates, Inc., 2001.

[4] Park, M. A. and Green, L. L., “Steady-state
Computation of Constant Rotational Rate

Dynamic Stability Derivatives,” AIAA Paper
2000-4321, June 2000.

[5] Oktay, E. and Akay, H. U., “CFD Predicitiions
of Dynamic Derivatives for Missiles,” AIAA
Paper 2002-0276, Jan. 2002.

[6] Murman, S.M., Aftosmis, M.J., and Berger,
M.J., “Numerical Simulation of Rolling-
Airframes Using a Multi-Level Cartesian
Method,” AIAA Paper 2002-2798, June 2002.

[7] Beazley, D.M., “SWIG: An Easy to Use Tool
for Integrating Scripting Languages with C
and C++,” in Proceedings of the 4th USENIX
Tcl/Tk Workshop, pp. 129–139, 1996.

[8] “Simplified Wrapper and Interface Genera-
tor.” http://www.swig.org.

[9] Murman, S.M., Aftosmis, M.J., and Berger,
M.J., “Implicit Approaches for Moving
Boundaries in a 3-D Cartesian Method,”
AIAA Paper 2003-1119, Jan. 2003.

[10] Chan, W., Meakin, R., and Potsdam, M.,
“CHSSI Software for Geometrically Complex
Unsteady Aerodynamic Applications,” AIAA
Paper 2001-0539, Jan. 2001.

[11] Chan, W. M., “The OVERGRID Interface
for Computational Simulations on Overset
Grids,” AIAA Paper 2002-3188, June 2002.

[12] Ellington, C.P., “The Aerodynamics of Hov-
ering Insect Flight. III. Kinematics,” Phil.
Transactions of the Royal Society of London
B, 305:41–78, 1984.

[13] van Arsdale, D., “Homogeneous Transforma-
tion Matrices for Computer Graphics,” Com-
puters & Graphics, 18(2):177–191, 1994.

11

http://www.swig.org

Appendix

A V-22 Example
Specification

This specifies a possible Component hierarchy for
the V-22 tilt-rotor shown in Fig. 3.

file://localhost/Users/smurman/pubs/reno/03/xml4cfd/V22/Config.xml file://localhost/Users/smurman/pubs/reno/03/xml4cfd/V22/Config.xml

1 of 1 12/18/02 3:06 PM

<?xml version='1.0' encoding='utf-8'?>
<Configuration>

 <Component Name="Starboard Nacelle" Parent="Nacelles"
 Type="struc">
 <Data> Grid List=82-97 </Data>
 </Component>

 <Component Name="Port Nacelle" Parent="Nacelles" Type="struc">
 <Data> Grid List=66-81 </Data>
 </Component>

 <Component Name="Nacelles" Parent="Main Body" Type="container"/>

 <Component Name="Main Body" Type="struc">
 <Data> Grid List=1-65 </Data>
 </Component>

 <Component Name="Starboard Blades" Parent="Starboard Nacelle"
 Type="struc">
 <Data> Grid List=107-115 </Data>
 </Component>

 <Component Name="Port Blades" Parent="Port Nacelle"
 Type="struc">
 <Data> Grid List=98-106 </Data>
 </Component>

</Configuration>

This specifies the motion of the V-22 tilt-rotor
Configuration show in Fig. 3. The rotors transition
from the vertical to horizontal positions, and the
blades are continuously rotating about the rotor
hub. The left and right sets of blades are counter-
rotating. Figure 3 contains snapshots of the motion
at 4 instances during the transition of the rotors.

file://localhost/Users/smurman/pubs/reno/03/gmp/V22/Scenario.xml file://localhost/Users/smurman/pubs/reno/03/gmp/V22/Scenario.xml

1 of 1 12/31/02 8:28 AM

<?xml version='1.0' encoding='utf-8'?>
<Scenario>

<Prescribed Component="Nacelles" Start="0" Duration="1" >
 <Rotate Center="0.86775, 0, 0.3742" Axis="0, -1, 0"
 Speed=" 0.5*pi" />
</Prescribed>

<Prescribed Component="Starboard Blades" Start="0" >
 <Rotate Center="0.903614, 0.602761, 0.662562" Axis="0, 0, 1"
 Speed="2.0 * pi" />
</Prescribed>

<Prescribed Component="Port Blades" Start="0" >
 <Rotate Center="0.903614, -0.602761, 0.662562" Axis="0, 0, -1"
 Speed="2.0 * pi" />
</Prescribed>

</Scenario>

B Hovering Bee Example
Specification

The following is a Configuration specification for
the bee geometry shown in Fig. 4 expressed in XML
syntax:

file://localhost/Users/smurman/pubs/reno/03/xml4cfd/bug/Config.xml file://localhost/Users/smurman/pubs/reno/03/xml4cfd/bug/Config.xml

1 of 1 12/12/02 2:33 PM

<?xml version='1.0' encoding='utf-8'?>

<Configuration Source="bee5.a.tri" AngleUnit="radian">

 <Component Name="Left Wing" Parent="Thorax" Type="tri">
 <Data> Face Label=9, 10 </Data>
 </Component>

 <Component Name="Right Wing" Parent="Thorax" Type="clone">
 <Transform>
 <Mirror Plane="y"/>
 </Transform>
 <Data> Original = "Left Wing" </Data>
 </Component>

 <Component Name="Left Legs" Parent="Legs" Type="tri">
 <Data> Face Label=3, 4, 5 </Data>
 </Component>

 <Component Name="Right Legs" Parent="Legs" Type="clone">
 <Transform>
 <Mirror Plane="y"/>
 </Transform>
 <Data> Original = "Left Legs" </Data>
 </Component>

 <Component Name="Legs" Parent="Thorax" Type="container">
 </Component>

 <Component Name="Left Antennae" Parent="Head" Type="tri">
 <Data> Face Label=2 </Data>
 </Component>

 <Component Name="Right Antennae" Parent="Head" Type="clone">
 <Transform>
 <Mirror Plane="y"/>
 </Transform>
 <Data> Original = "Left Antennae" </Data>
 </Component>

 <Component Name="Left Eye" Parent="Head" Type="tri">
 <Data> Face Label=7 </Data>
 </Component>

 <Component Name="Right Eye" Parent="Head" Type="clone">
 <Transform>
 <Mirror Plane="y"/>
 </Transform>
 <Data> Original = "Left Eye" </Data>
 </Component>

 <Component Name="Head" Parent="Body" Type="tri">
 <Data> Face Label=6 </Data>
 </Component>

 <Component Name="Thorax" Parent="Body" Type="tri">
 <Data> Face Label=1 </Data>
 </Component>

 <Component Name="Abdomen" Parent="Body" Type="tri">
 <Data> Face Label=8 </Data>
 </Component>

 <Component Name="Body" Parent="Bug" Type="container">
 </Component>

 <Component Name="Bug" Type="container">
 </Component>

</Configuration>

The following is a motion specification for the
hovering bee shown in Fig. 5 expressed in XML
syntax. The compound motion of the wings
is an ordered series of rotations; two about
body axes and one about a wing chord line.

file://localhost/Users/smurman/pubs/reno/03/gmp/bug/Scenario.xml file://localhost/Users/smurman/pubs/reno/03/gmp/bug/Scenario.xml

1 of 1 12/31/02 8:38 AM

<?xml version='1.0' encoding='utf-8'?>

<Scenario AngleUnit="radian">

<Prescribed Component="Left Wing" Start="0.25" Duration="0.50" >
 <Rotate Center="0, -48, 13.3" Axis="0, -0.999343, 0.0362456"
 Speed="-pi" Frame="body"/>
</Prescribed>

<Prescribed Component="Left Wing" Start="1.1" Duration="0.50" >
 <Rotate Center="0, -48, 13.3" Axis="0, -0.999343, 0.0362456"
 Speed="pi" Frame="body"/>
</Prescribed>

<Prescribed Component="Left Wing" Start="0" >
 <Rotate Center="0, -47, 0" Axis="0, 0, -1"
 Speed="pi/3.25 * pi *cos(pi*t + asin(pi/10.0))"/>
 <Rotate Center="0, 0, 0" Axis="1, 0, 0"
 Speed="0.25*pi*cos(pi*t)"/>
</Prescribed>

<Prescribed Component="Right Wing" Start="0.25" Duration="0.50" >
 <Rotate Center="0, 48, 13.3" Axis="0, 0.999343, 0.0362456"
 Speed="pi" Frame="body" />
</Prescribed>

<Prescribed Component="Right Wing" Start="1.1" Duration="0.50" >
 <Rotate Center="0, 48, 13.3" Axis="0, 0.999343, 0.0362456"
 Speed="-pi" Frame="body"/>
</Prescribed>

<Prescribed Component="Right Wing" Start="0" >
 <Rotate Center="0, 47, 0" Axis="0, 0, 1"
 Speed="pi/3.25 * pi *cos(pi*t + asin(pi/10.0))"/>
 <Rotate Center="0, 0, 0" Axis="1, 0, 0"
 Speed="-0.25*pi*cos(pi*t)"/>
</Prescribed>

<Prescribed Component="Body" Start="0" >
 <Rotate Center="0, 0, 0" Axis="0, 1, 0"
 Speed="pi*(pi/24.0)*cos(pi*t)" />
</Prescribed>

<Prescribed Component="Legs" Start="0" >
 <Rotate Center="0, 0, 0" Axis="0, 1, 0"
 Speed="pi*(pi/36.0)*cos(pi*t)" />
</Prescribed>

</Scenario>

12

C Space Shuttle Example
Specification

The following is a Configuration spec-
ification for the Space Shuttle shown
in Fig. 6 expressed in XML syntax.

file://localhost/Users/smurman/pubs/reno/03/xml4cfd/shuttle/Confi... file://localhost/Users/smurman/pubs/reno/03/xml4cfd/shuttle/Confi...

1 of 1 12/12/02 4:34 PM

<?xml version='1.0' encoding='utf-8'?>

<!DOCTYPE Configuration SYSTEM "Config.dtd">

<Configuration AngleUnit="radian">

 <Component Name="Orbiter" Type="struc">
 <Data> Grid List=6,32,47-57,59-61,63-86,90-92,94,96-105 </Data>
 </Component>

 <Component Name="Left SRB" Parent="External Tank" Type="struc">
 <Data> Grid List=16-21,107 </Data>
 </Component>

 <Component Name="Right SRB" Parent="External Tank" Type="struc">
 <Data> Grid List=22-27,106 </Data>
 </Component>

 <Component Name="External Tank" Parent="Orbiter" Type="struc">
 <Data> Grid List=1-5,7-15,28-31,33-46 </Data>
 </Component>

</Configuration>

The following is the Aero6DOF Sce-
nario for the Space Shuttle SRB re-
lease expressed in XML syntax:

file://localhost/Users/smurman/pubs/reno/03/xml4cfd/shuttle/Scenari... file://localhost/Users/smurman/pubs/reno/03/xml4cfd/shuttle/Scenari...

1 of 1 12/18/02 4:07 PM

<?xml version='1.0' encoding='utf-8'?>

<!DOCTYPE Scenario SYSTEM "Scenario.dtd">

<Scenario Name="Booster Separation" Gravity="0.0, 0.0, -32.2" AngleUnit="DEG">

<Aero6dof Component="Left SRB"
 Start="0.0">

<!-- the center for the principal axes is implicitly the c.m. -->
 <InertialProperties
 Mass="150E3"
 CenterOfMass="0.4, -0.25, 1.642"
 PrincipalMomentsOfInertia="422, 40711, 40711">
 <PrincipalAxesOrientation Axis="0.0, 0.0, 1.0" Angle="0.0"/>
 </InertialProperties>

 <AppliedLoad Start="0.0" Duration="1.0" Frame="parent" Force="0.0, -200E3, 0.0" />

</Aero6dof>

<Aero6dof Component="Right SRB"
 Start="0.0">

<!-- the center for the principal axes is implicitly the c.m. -->
 <InertialProperties
 Mass="150E3"
 CenterOfMass="0.4, 0.25, 1.642"
 PrincipalMomentsOfInertia="422, 40711, 40711">
 <PrincipalAxesOrientation Axis="0.0, 0.0, 1.0" Angle="0.0"/>
 </InertialProperties>

 <AppliedLoad Start="0.0" Duration="1.0" Frame="parent" Force="0.0, 200E3, 0.0" />

</Aero6dof>

</Scenario>

13

	Introduction
	Design Goals
	Typographical Conventions
	Analytic Function Parser
	Configuration Specification
	Motion Specification
	Prescribed Motion
	V-22 Example
	Hovering Bee Example
	6-DOF Motion
	Space Shuttle Example

	Implementation
	Summary and Future Work
	References
	V-22 Example Specification
	Hovering Bee Example Specification
	Space Shuttle Example Specification

		2003-01-02T21:45:22-0800
	Scott Murman

